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ABSTRACT
 
In this paper a methodology for development of 
linguistically interpretable fuzzy models is presented. 
The implementation of the model is conducted through 
the training of a neuro-fuzzy network, i.e., a neural net 
architecture capable of representing a fuzzy system. In 
the first phase the structure of the model is obtained by 
subtractive clustering, which allows the extraction of a 
set of relevant rules based on a set of representative 
input-output data samples. In the second phase, the 
model parameters are tuned via the training of a neural 
network through backpropagation. In order to attain 
interpretability goals, the method described imposes 
some restrictions on the tuning of parameters and 
performs membership function merging. In this way, it 
will be easy to assign linguistic labels to each of the 
membership functions used. Therefore, the model 
obtained for the system under analysis will be described 
by a set of linguistic rules, easily interpretable.  
 
Keywords : system identification, fuzzy systems, 
neuro-fuzzy networks, clustering, interpretability 
 
 
1 INTRODUCTION 
 
Nowadays, information is playing a more and more 
relevant role in society. This circumstance is notorious 
not only in complex industrial production systems but 
also in simple leisure activities. Several studies have 
already been conducted in terms of development of 
modeling and control algorithms for industrial systems 
based on so-called intelligent techniques, as a means of 
integrating “intelligence” in production systems. 
Fundamentally, such developments aim to overtake 
some of the limitations and difficulties associated with 
classical methodologies. In this context, more precisely 
in system modeling, sometimes it is necessary that the 
resulting models have some transparency, i.e., that their 
information be interpretable, so as to permit a deeper 
understanding of the system under study. It is in this 
point that fuzzy mo deling founds its maximum 

potential. In fact, fuzzy models have some properties 
that make them particularly interesting, namely 
universal approximation [1] and the possibility of 
linguistic interpretation [11], being the former hardly 
attained via MLP (Multi-Layer Perceptrons). However, 
they have associated an important limitation, which 
results from the difficulty to quantify the fuzzy 
linguistic terms. Therefore, neuro-fuzzy nets appear as 
an attempt to conjugate the advantages of fuzzy systems 
in terms of transparency with the advantages of neural 
networks regarding learning capabilities. 
 The methodology presented is carried out in two 
main phases: in the first one, structure learning is 
performed, i.e., a set of fuzzy rules is obtained; in the 
second one, the model parameters are tuned, i.e., the 
parameters of the membership functions of the fuzzy 
system. The generality of strategies developed by 
several authors, based on the scheme referred, aim 
fundamentally to obtain models with high prediction 
accuracy. Clearly, if this is the main goal, it is 
questionable whether fuzzy modeling is the most 
adequate strategy, as it is pointed out in [6]. However, 
in case model transparency is a fundamental goal, the 
strategy referred does not guarantee anything regarding 
that objective. In fact, since parameter tuning is carried 
out under no restrictions, highly complex fuzzy data 
bases may come up. 
 Therefore, this paper tries to explore the potential of 
neuro-fuzzy networks to help getting real transparent 
models. Thus, linguistic models, i.e., models whose 
consequents are fuzzy sets, are used instead of 
Takagi-Sugeno [10] models, where the consequents 
implement, typically, first order linear functions, thus, 
difficult to interpret linguistically. Additionally, 
parameter learning is restricted and similar membership 
functions are merged, in order to ease the assignment of 
linguistic labels to the final functions. 
 So, in Section 2 the main issues of fuzzy 
identification are introduced. In Section 3 subtractive 
clustering, used for structure learning is presented, after 
what the unrestricted parameter learning strategy is 
described in Section 4. In Section 5, the strategies for 



implementation of interpretable models are presented. 
The methodologies are applied to the Mackey-Glass 
chaotic time series, in Section 6. Finally, some 
conclusions are drawn in Section 7. 
 
 

2 FUZZY IDENTIFICATION 
 
Dynamical system identification deals with the 
implementation of models using experimental data. 
Thus, when a model is developed based on the theory of 
system identification, its parameters are tuned according 
to some criteria, aiming to obtain a final representation 
adequate for the modeling purposes. In this sense, fuzzy 
identification is presented as a particular case of system 
identification, in which the model is included in the 
class of fuzzy systems. 
 Thus, without loss of generality, let us assume a 
single-input single-output (SISO) model, with one input, 
u, and one output, y, from where N data samples are 
collected (1): 

Z u y u y u N y NN = ( ), ( ) , ( ), ( ) ,..., ( ), ( )1 1 2 2m r  (1) 

 Using the data collected, the goal is to derive a fuzzy 
model, represented by a set of rules of type Ri (2): 

R If y t is A and u t d is B then y t is Ci i i i: ( ) ( ) $( )- -1 1 1 1  (2) 

where d represents the system delay time and Aji, Bji and 
Cji denote linguistic terms associated to each input and 
output. Those terms are defined by their respective 
membership functions µ µ µA B Cji ji ji

, , . In this way, the 

previous structure is called a FARX structure (Fuzzy 
Auto Regressive with eXogenous inputs) as a 
generalization of the well-known ARX structure. Thus, 
the selection of a set of rules of type (2), as well as the 
definition of the fuzzy sets Aji, Bji and Cji, constitute 
some project issues specific to fuzzy systems. 
 
 
3 STRUCTURE LEARNING 
 
In order to obtain a set of g fuzzy conditional rules, 
capable of representing the system under study, 
clustering algorithms are particularly suited, since the 
permit a scatter partitioning of the input-output data 
space, which results in finding only the relevant rules. 
Comparing to grid-based partitioning methods, 
clustering algorithms have the advantage of avoiding 
the rule base explosion, i.e., the curse of dimensionality. 
 In this paper, Chiu’s subtractive clustering is applied 
[2]. This scheme possesses some interesting advantages, 
especially in a neuro-fuzzy identification context. In 
fact, the algorithm is characterized by its efficiency and 
for being suited for the initialization of iterative 

optimization procedures, as is the case. 
 Chiu’s algorithm belongs to the class of potential 
function methods, being, more precisely, a variation of 
the mountain method (see [3]). In this class, a set of 
points is defined as possible group centers, each of them 
being interpreted as an energy source. In subtractive 
clustering, the center candidates are the data samples 
themselves. In this way, the main limitation of the 
mountain method, i.e., curse of dimensionality resulting 
from defining candidates in a grid, is overtaken.  
 So, let ZN (1) be a set of N data samples, z1, z2, …, 
zN, defined in a m+n space, where m denotes the number 
of inputs and n the number of outputs. In order to make 
the range of values in each dimension identical, the data 
samples are normalized, so that they are limited by a 
hypercube. 
 As was referred, it is admitted that each of the 
samples defines a possible cluster center. Therefore, the 
potential associated to zi is (3):  
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where ra>0 is radii, a constant which defines the 
neighborhood radius of each point. Thus, points zj 
located outside of the radius of zi will have a reduced 
influence in its potential. On the other hand, the effect 
of points close to zi will grow with their proximity. In 
this way, points with a dense neighborhood will have 
higher potentials associated.  
 After computing the potential for each point, the one 
with the highest potential is selected as the first cluster 
center. Next, the potential of all the remaining points is 
reduced. Defining z1

* as the first group center and 
denoting its potential as P1

*, the potential of the 
remaining points is reduced as in (4), where the constant 
rb>0 defines the neighborhood radius with sensible 
reductions in its potential. 
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In this way, points close to the chosen center will have 
their potential reduced in a more significant manner, 
and so the probability of being selected as centers 
decreases. This procedure has the advantage of avoiding 
the concentration of identical clusters in dense zones. 
Therefore, rb is selected to be a bit higher than ra, so as 
to avoid closely spaced clusters. Typically, rb = 1.5 ra. 
 After performing the potential reduction for all the 
candidates, the one with the highest potential is selected 
as the second cluster, after what the potential of the 
remaining points is again reduced. Generically, after 
determining the rth group, the potential is reduced as (5): 
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 The procedure of center selection and potential 
reduction is repeated until a stopping criterion is 
reached [3]. 
 As can be understood from the description of the 
algorithm, the number of clusters to obtain is not 
pre-specified. However, it is important to note that the 
parameter radii is directly related to the number of 
clusters found. Thus, a small radius will lead to a high 
number of rules, which, if excessive, may result in 
overfitting. On the other hand, a bigger radius will lead 
to a smaller number of clusters, which may originate 
underfitting and so, models with reduced representation 
accuracy. Therefore, in practice it is necessary to test 
several values for radii and select the most adequate 
according to the results obtained. 
 After applying subtractive clustering, each of the 
clusters obtained will constitute a prototype for a 
particular behavior of the system under analysis. So, 
each cluster can be used to define a fuzzy rule able to 
describe the behavior of the system in some region of 
the input-output space. Typically, g fuzzy conditional 
rules of type (6) are obtained: 

Rule r:  

 IF (X1 is LX1(r)) AND (X2 is LX2(r)) AND … 
  AND (Xm is LXm(r))  
 THEN (Y1 is LY1(r)) AND (Y2 is LY2(r)) 
  AND …AND (Yn is LYn(r)) 

(6) 

where each of the linguistic terms in the antecedent, 
LXj(r), has associated a membership function defined as 
follows (7): 

µ
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Here, xj denotes a numeric value regarding the jth input 
dimension and xrj

* is the jth coordinate in the 
m-dimensional vector xr

*. Equation (7) results from the 
computation of the potential associated to each point in 
the data space.  
 As for the consequents, it will be possible to 
associate them either a fuzzy set or a constant directly. 
In the present case, linguistic models are derived, so 
fuzzy sets are utilized (8): 

µ
α
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yo yro

r y e o nb g b g = =
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, , , ,
2

1 2 L  (8) 

where yo denotes a numeric value regarding the oth 
output dimension and yro

* is the jth coordinate in the 
n-dimensional vector yr

*.  
 Comparing (7), (8) and the general equation for 
Gaussian functions, it becomes clear that the 

membership functions considered belong to the type 
referred. Thus, regarding the standard deviation of each 
function, expression (9) is obtained trivially: 

σ rj
ar=
8

 (9) 

 
 
4 PARAMETER LEARNING 
 
After determining a fuzzy model structure, the model 
parameters, i.e., the centers and standard deviations of 
the Gaussian membership functions, should be tuned. In 
the present work, such task is performed by training a 
fuzzy neural network based on [4] (Figure 1). 
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Figure 1. Neuro-fuzzy network. 

 Basically, the previous network is composed by five 
layers: an input layer, a fuzzification layer, a rule layer, 
an union layer and an output or defuzzification layer, 
sequentially. 
 In order to make the next expressions more readable, 
the notation used is presented beforehand: 

- ai
(p2): activation of the neuron i in layer 2, 

regarding the training pattern p (i denotes an input 
term: “input”); 

- ar
(p3): activation of the neuron r in layer 3, 

regarding the pattern p (r denotes “rule”); 
- as

(p4): activation of the neuron s in layer 4, 
regarding the pattern p (s denotes “S-norm”); 

- ao
(p5) = yo

(p): activation of the neuron o in layer 5, 
i.e., output, regarding the pattern p (o denotes 
“output”); 

- yo
(p): desired activation for neuron o in layer 5, i.e., 

for the network output, regarding pattern p. 
 
 In the structure presented, the input layer simply 
receives data from the external environment and passes 



them to the next layer.  
 In the second layer, the fuzzification layer, each of 
the cells corresponds to a membership function 
associated to each of the inputs. Since this work 
assumes the goal of obtaining interpretable models, 
two-sided Gaussian functions are used (Figure 2). Thus, 
the activation of each of the neurons in this layer is 
given by (10). 
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Figure 2. Two-sided Gaussian function. 
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Here, cijL and σijL represent, respectively, the center and 
standard deviation of the left component of the ith 
membership function related to the jth input. For the 
right component, the index R is used. Such parameters 
constitute the weights of the layer one to layer two links 
(LXj(r) in Figure 1). In the same expression, xj

(p) denotes 
the pth pattern associated do input j. 
 As for the neurons in the rule layer, their function 
consists of performing the antecedent conjunction of 
each rule, by means of some T-norm. By experimental 
testing, it was concluded that truncation operators (e.g., 
minimum) lead to better results than algebraic operators 
(e.g., product), when interpretability is desired.  So, 
operator minimum is selected for fuzzy conjunction 
(11): 
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where nar stands for the number of inputs in the 
antecedent of rule r. 
 The fourth layer, called the union layer, is 
responsible for integrating the rules with the same 
consequents, via some S-norm. Once again, truncation 
operators are preferred, namely operator maximum (12).  
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 There, nrs stands for the number of rules which have 
the neuron s as consequent. 
 As for the output layer, or defuzzification layer (d, in 
Figure 1), the layer four to layer five links (LYo(r) in the 
same figure) define the parameters of the membership 
functions associated to the output linguistic terms. Thus, 
based on these membership functions and on the 
activation of each rule, its neurons should implement a 
defuzzification method suited for  two-sided Gaussian 
functions, as the one presented in [8] (13): 

$y a

c c a

a

o
p

o
p

osL osL osR osR
s

T Y

s
p

osL osR
s

T Y

s
p

o

o

b g b g

b g
b g

b g
b g

b g

b g
= =

+

+

=

=

Â

Â
5 1

4

1

4

1
2

1
2

σ σ

σ σ

 (13) 

where cosL and σosL represent the center and standard 
deviation of the left component of the sth membership 
function related to output o. In the previous 
expression,T(Yo) stands for the number of 
membership functions associated to each linguistic 
output variable Yo. The main idea of the defuzzification 
method proposed is to weight the activation of each 
rule, not only by the centers, right and left, but also by 
their standard deviations.  
 Based on the function performed by each neuron, the 
network is trained in batch mode, via the well-known 
backpropagation algorithm. The implementation of the 
training methodology referred is described with some 
detail in [8]. 
 
 

5 INTERPRETABILITY 
 
The philosophy of fuzzy systems lays on the possibility 
of linguistic interpretation that characterizes them. 
Nevertheless, this issue is often ignored, being given 
prevalent relevance to the factors related to 
approximation capabilities. However, as Nauck and 
Kruse refer [6], in case interpretability is not a major 
concern, it is important to consider other methods, 
which might be more adequate.  
 Thus, as for the neuro-fuzzy identification strategy 
described in the previous sections, some questions are 
addressed regarding the model transparency after 
learning. In fact, the unrestricted parameter adjustment 
may lead to a highly complex set of membership 
functions, for which it will be difficult to assign 
linguistic labels. Therefore, it is important to impose 
adequate restrictions for parameter tuning, so that 
interpretability is attained. In the same way, two-sided 



Gaussian functions are appealing due to their increased 
flexibility, which permits to control function 
overlapping and improves function distinguishability. 
 Therefore, three main criteria for model 
interpretability are defined. The first one, and most 
important, is related to the point just referred, i.e., 
function distinguishability. The others come from 
human cognitive issues, according to which the number 
of rules and the number of membership functions 
associated to each variable should not be excessive. In 
the present case, these issues are monitored by the 
modeler, in order to obtain a satisfactory trade-off 
between model accuracy and interpretability.   
 
 
5.1. Similar Membership Function Merging 
 
The first step in order to attain model interpretability 
consists of finding and merging similar membership 
functions. 
 Structure learning by means of clustering techniques 
leads to initial membership functions with a high 
similarity degree. That makes the model lack 
transparency and originates an excessive number of 
parameters to adjust, and the consequent computational 
cost. Thus, it seems useful to merge functions with a 
high enough similarity degree. 
 In order to perform function merging, directed to 
rule base simplification, it was concluded in [9] that S1 
(14) is a very adequate similarity measure. There, the 
similarity between two fuzzy sets A and B is given by 
the result of the division of the area of their intersection 
by the area of their union: 

S A B
A B
A B1( , ) =

«
»

 (14) 

where the fuzzy intersection and union are performed, 
respectively, by the operators minimum and maximum. 
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Figure 3. Membership function merging. 

 After detecting the most similar pair of membership 
functions, if their degree of similarity is above some 
threshold, those functions are merged. The new function 
results by averaging the parameters of the original 
functions, i.e., centers and standard deviations, as is 
depicted in Figure 3. There, the original functions are 
represented in dashed lines and the resulting function in 

solid line. The procedure of membership 
function merging, one pair in each iteration, continues 
until no more pairs satisfy the merging threshold.  
 As a result of function merging, the rule base is 
updated. In fact, the rules regarding the fuzzy sets 
merged will then contain the new function obtained. 
Thus, in the original rules, the premises and conclusions 
are updated so as to include the new terms. Therefore, 
the rule base may be simplified in case redundant rules 
are obtained. Besides that, situations of inconsistency 
may result, if rules with the same antecedents have 
different consequents. This may be a consequence of 
deficient structure learning or may indicate that the 
merging threshold should be adjusted. 
 
 
5.2. Restricted Parameter Learning 
 
After rule base simplification through function merging, 
it is essential to guarantee the interpretability is 
maintained during parameter optimization. Thus, it  was 
decided to monitor the optimization procedure, so that 
function distinguishability is attained. 
 Thus, regarding the issue just referred, it is assumed 
that the overlapping degree between two functions is 
excessive in case the supreme of the support of the 
function to the left, i.e., its right “zero”, goes beyond the 
right zero of the function to the right. The same 
reasoning applies to the left component of the functions. 
Formally, it turns out (15): 
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where k  refers to some membership function and i and j 
are, respectively, its right and left neighbor functions. In 
case function overlapping does not satisfy the 
constraints presented in (15), the standard deviations of 
function k  are altered in order to keep those conditions. 
Therefore, the right and left components are changed as 
in (16) and (17), respectively: 
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 Besides overlapping monitoring, it was concluded 
that function distance should also be checked. This 
procedure aims to avoid inclusions, i.e., functions total 
or almost totally “inside” other functions. Furthermore, 
the fact that the functions are not too close also 
improves model interpretability. Thus, the constraint 
(18) for the minimal distance between functions was 
defined: 
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whereα ∈ [0;1] denotes the percentage of the domain 
[Xmin; Xmax] used for calculating the minimal distance 
allowed. In case this condition does not apply, the 
function centers are changed as follows (19): 
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 In this situation, the new centers will be based on the 
average of the right and left original centers of the two 
functions compared, from which their values are altered 
in order to guarantee the distance required. 
 Despite the restrictions imposed, it may turn out that 
the final model is not sufficiently interpretable, as a 
result of the trade-off between interpretability and 
accuracy. Therefore, it is useful to perform function 
merging every x training epochs.  
 
 
6 SIMULATION RESULTS 
 
One of the most commonly used case studies in system 
identification consists of the prediction of the 
Mackey-Glass chaotic time series [5], described by 
equation (20).  
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 The time series does not show a clear periodic 
behavior and it is also very sensible to initial conditions. 
 The problem consists of predicting future values of 
the series.  
 The application of the technique described 
previously is carried out based on identification data 
from the “IEEE Neural Network Council, Standards 
Committee, Working Group on Data Modelling 
Benchmarks”, which are also used in the analysis of 
several other methodologies. So, in order to obtain a 
numeric solution the fourth order Runge-Kutta method 
was applied. For integration, it was assumed x(t)=0, t<0, 
and a time interval of 0.1. The initial condition x(0)=1.2 
and the parameter τ=17 were also defined. In this case, 
[x(t-18), x(t-12), x(t-6), x(t)] are used to predict x(t+6). 
Based on the parameterization described, data was 
obtained in the interval t ∈ [0; 2000], after what 1000 
input-output pairs were selected from t ∈ [118; 1117]. 
The data collected are depicted in Figure 4. 
 Using the samples obtained, the chaotic time series 

was modeled, according to the procedures described in 
the previous sections. Thus, the parameter ra was 
assigned the value 0.5, resulting 9 fuzzy rules. Next, the 
network, with four inputs and one output, was trained, 
defining 0.65 for the merging threshold and x = 200. 
 So, after 800 epochs the RMS (Root Mean Square) 
error was 0.0228 for training data and 0.0239 for test 
data. As for the number of membership functions for the 
variables x(t-18), x(t-12), x(t-6), x(t) and x(t+6), it 
resulted, respectively, 5, 4, 5, 4 and 5, leading to 92 
adjustable parameters.  
 In Figure 5 the results obtained for test data are 
depicted. It can be seen that they are satisfactory.  
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Figure 4. Chaotic time series: identification data.  
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Figure 5. Chaotic series: output prediction. 

 
 As for membership functions, the results obtained 
are presented in Figure 6. As can be seen, it is not too 
difficult to assign linguistic terms to each of the 
membership functions. In the same figure, the labels VS, 
S, M, B and VB denote, respectively, the linguistic terms 
“very small”, “small”, “medium”, “big” and “very big”. 
Thus, the fundamental dynamics of the chaotic time 
series are interpreted according to Table 1. 
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Figure 6. Membership functions obtained. 

Rule x(t-18) x(t-12) x(t-6) x(t) x(t+6) 

1 M VB B VB B 

2 B VB M S S 

3 S M M VB VB 

4 M M VS VB B 

5 S B S VS M 

6 S VB VB B M 

7 S VS S B B 

8 VS VS M B B 

9 VB VB VB B 

⇒  

VS 

Table 1. Linguistic description of the series. 

 Comparing to NEXPROX [6] (Table 2), the results 
obtained are clearly better. 
  

Method Nr. 
Rules 

Nr.  
Param.  

RMSE 

Paiva and Dourado 9 92 0.0239 

NEFPROX (A) 129 105 0.0332 

NEFPROX (G) 26 38 0.0671 

Table 2. Chaotic series: comparison with other 
techniques. 

 
 
7 CONCLUSIONS 
  
 In this paper a neuro-fuzzy methodology for the 
implementation of real interpretable fuzzy models is 
described. By the application of subtractive clustering, 
an initial structure for the fuzzy model was obtained, 
which is used for the initialization of a fuzzy neural 
network. However, adjusting membership function 
parameters without any constraints leads usually to 
complex overlapping between functions, which limits 

interpretability. Therefore, a learning scheme to allow 
the development of interpretable fuzzy models is 
proposed. The methodology presented is based on 
similar membership function merging and on constrains 
regarding parameter tuning, in order to improve 
function distinguishability in terms of distance and 
overlapping. The approach described is applied to the 
prediction of the Mackey-Glass chaotic time series, 
resulting a satisfactory trade-off between model 
accuracy and interpretability. However, it is important 
to point out that the results are not always acceptable. In 
fact, as complexity grows, the constraints imposed may 
lead to inaccurate models, which, consequently, are of 
no use. Clearly, it can be said that interpretability 
bounds accuracy and vice-versa. 
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